TEST LABORATORY

The test laboratory is accredited in compliance with DIN EN ISO/IEC 17025 by the Deutsche Akkreditierungsstelle GmbH. The accreditation is also valid for products of Regulation EU 2016/425. Test methods not included in the scope of accreditation are marked by a *.

TEST REPORT

Order number STFI:

20200069.6

Order number client:

none

Report date:

4 February 2020

Person responsible:

Reinhardt

Orderer:

Vescom B.V.

Sint Jozefstraat 20 5753 AV Deurne NETHERLAND

Test order:

Date:

14 January 2020

Order received:

16 January 2020

Material received:

16 January 2020

www.stfi.de

Material to analyse:

Page 2 of 6 pages of test report from

signed by client		code for order processing
SOTRA 8070	col.: 13	P0069_20_19
SOTRA 8070	col.: 14	P0069_20_20
SOTRA 8070	col.: 18	P0069_20_21

The sampling was supplied by the client. The test department is not informed about the sampling procedure.

Analysis content:

- Remission and transmission in the visible light range in accordance with (1) DIN EN 410: 2011-04 (DIN EN 14500: 2008-08)
- Remission and transmission in the global radiation range in accordance with (2)DIN EN 410: 2011-04 (DIN EN 14500: 2008-08)
- Calculation of the total energy permeability degree gtot of a window system (3)*with sun protective material, following DIN EN ISO 52022-1: 2018-01 and approximate calculation of the reduce factor F_c following DIN EN 14501: 2006-02
- (4)* Calculation of the total energy permeability degree gtot and the direct solar transmittance $\tau_{e,tot}$ of a window system with sun protective material, following DIN EN ISO 52022-1: 2018-01 and approximate calculation of the reduce factor F_c and the secondary heat transfer factor q_{i,tot} following DIN EN 14501: 2006-02 (only for reference glazing C of DIN EN 14501: 2006-02)
- Direct and diffuse transmission measurement in the visible light range in accordance with DIN EN 410: 2011-04 (DIN EN 14500: 2008-08)
- Classification of glare control in accordance with DIN EN 14501: 2006-02 (6)*(p.15; paragraph 6.3; table 8)
- Classification of privacy night in accordance with DIN EN 14501: 2006-02 (7)*(p.16; paragraph 6.4; table 9)
- Classification of the visual contact with the outside in accordance with (8)*DIN EN 14501: 2006-02 (p.17; paragraph 6.5; table 10)
- Classification of the daylight utilisation in accordance with (9)*DIN EN 14501: 2006-02 (p.18; paragraph 6.6; table 11) on the basis of the rotational symmetric diffuse/hemispherical light transmission degree τ_{v,dif-h}, approximately calculated after equation 18 in DIN EN 14500: 2008-08
 - * Standards for calculation and assessment are not allowed for accreditation

Conditions and equipment for optical tests:

test parameter	symbol	range of radiation
light transmission degree	τ _{v,n-h}	380780 nm (standard light D65)
light remission degree	ρ _{v,n-h}	380780 nm (standard light D65)
light absorption coefficient	αν	380780 nm
UV - transmission degree	Time	280380 nm (UV-radiation)
solar transmission degree	τ _{e,n-h}	2802500 nm (global radiation)
solar remission degree	Pe,n-h	2802500 nm (global radiation)
solar absorption coefficient	α _e	2802500 nm
normal/normal light transmission degree	τ _{ν,n-n}	380780 nm (standard light D65)
normal/diffuse light transmission degree	τ _{v,n-dif}	380780 nm (standard light D65)

Equipment: UV-VIS-NIR double beam spectrophotometer, company PERKIN - ELMER Corp., USA; 150 mm integrating sphere; irradiation perpendicular to the integrating sphere opening; 8° slope of the sample area to the light incidence axis for remission measurements

For each material sample of the client three samples in the format (55×75) mm are taken, one in the machine direction, one in the cross machine direction and one diagonally. The irradiation takes place, if not otherwise noted, on the material side which is faced to the window system.

Description of classification for visual comfort:

Description of classification for glare control, privacy night, visual contact with the outside and the daylight utilisation is given in DIN EN 14501: 2006-02 (p.13; paragraph 6.1 table 5).

Influence on visual comfort						
class	0	1	2	3	4	
	very small effect	small effect	moderate effect	high effect	very high effect	

Test results:

(1) Light range

UV-range

code	light transmission degree	light remission degree	light absorption coefficient	UV-transmission degree ¹⁾
P0069_20	τ _{v.n-h}	ρ _{v,n-h}	α_{v}	τ,,,
19	0,000	0,7757	0,2243	0,000
20	0,0000	0,8180	0,1820	0,0000
21	0,0000	0,7733	0,2267	0,000

¹⁾ In textile samples which were finished with an optical brightener the measured values of the UV-transmission degree could be doubtful (higher) under the use of the above described measuring method.

(2) Global radiation range

code	solar transmission degree	solar remission degree	solar absorption coefficient
P0069_20	τ _{e.n-h}	Pe,n-h	α_{e}
19	0,0010	0,6960	0,3030
20	0,0010	0,7437	0,2553
21	0,0010	0,7007	0,2983

(3)* Total energy permeability degree g_{tot} and reduce factor \boldsymbol{F}_{c}

	single	glazing		azing with	low en	azing with nission and argon space	low en degree a	zing with nission and argon space
code		W/(m²K)),85		W/(m²K)),76		W/(m²K)),59		W/(m²K)),55
P0069 20	g _{tot}	Fc	9 _{tot}	Fc	9 _{tot}	F _c	9 _{tot}	Fc
19	0,31	0,36	0,34	0,44	0,34	0,58	0,34	0,61
20	0,28	0,33	0,31	0,41	0,33	0,55	0,32	0,58
21	0,30	0,36	0,34	0,44	0,34	0,58	0,33	0,61

	reference glazing - DIN EN 13363-1: 2007-09						
code	triple g U _g =2,0 \ g=0		double glazing with the protective coverin U _g =1,6 W/(m²K) g=0,70				
P0069_20	g _t	Fc	g _t	Fc			
19	0,34	0,53	0,35	0,50			
20	0,33	0,50	0,33	0,47			
21	0,34	0,53	0,35	0,49			

(4)* Total energy permeability degree g_{tot} , direct solar transmittance $\tau_{e,tot}$, reduce factor F_c and secondary heat transfer factor $q_{i,tot}$

	c (refe	ouble glazing with leading C of December 1	ow emission degree DIN EN 14501: 2006	e 6-02)
code	U _g =1,2 W/(m²K) g=0,59		$\tau_{\rm e}$ =	0,49 0,27
P0069_20	g _{tot}	Fc	T _{e,tot}	q _{i,tot}
19	0,34	0,58	0,00	0,34
20	0,33	0,55	0,00	0,32
21	0,34	0,58	0,00	0,34

Mounting assumptions:

- sun protective material inside and closed
- · aerated interspace to the glazing

The mathematical model in DIN EN ISO 52022-1: 2018-01 (simplified method) for calculation of g_{tot} and $\tau_{e,tot}$ is appropriated to a coarse compare of sun protection materials. The model is only valid for the following boundary requirements:

- $0 \le \tau_{e,n-h} \le 0.5$
- $0.1 \le \rho_{e.n-h} \le 0.8$

If the above mentioned boundary requirements are not fulfilled, the calculation of $F_{\rm c}$ from $g_{\rm tot}$ and g is not guaranteed either. The calculation is recommended in accordance with DIN EN ISO 52022-3: 2018-01 (detailed calculation method). Therefore it is necessary to measure the reflection of the sample side which is not directly exposed by the sun radiation and the sample thickness at least in addition to the data of this order. In case of known conditions to be used at a building it is unalterable.

(5) Diffuse and normal transmission in the visible light range

code	normal/hemispherical light transmission degree	normal/diffuse light transmission degree	normal/normal light transmission degree
P0069_20	τ _{ν,n-h}	$\tau_{\rm v, n-dif}$	$\tau_{v,n-n}$
19	0,0000	0,000	0,0000
20	0,000	0,000	0,0000
21	0,0000	0,0000	0,000

(6-8)* Classification

code	glare control	privacy night	sight contact with the outside
P0069_20			
19	4	4	0
20	4	4	0
21	4	4	0

(9)* Classification of the daylight utilisation

code	diffuse/hemispherical light transmission degree	daylight utilisation
P0069_20	τ _{v,dif-h}	
19	0,0000	0
20	0,0000	0
21	0,000	0

The results are mean values from three measurements; spectrograms are kept in the test department.

Unless otherwise agreed, all materials we received within this order will be kept for a maximum time of 6 month. Materials which are not stored because of technical or safety reasons are excluded from that.

The testing period is defined as timeframe between receipt of samples and issue date of test report.

The test results are referring to the submitted samples. These test report is not allowed to copy in parts.

Dipl.-Ing. Marian Hierhammer head of test department geprüft

Patrick Reinhardt, M.Sc. field responsible collaborator

TEST LABORATORY

SÄCHSISCHES **TEXTIL FORSCHUNGS**

INSTITUT e.V.

The test laboratory is accredited in compliance with DIN EN ISO/IEC 17025 by the Deutsche Akkreditierungsstelle GmbH. The accreditation is also valid for products of Regulation EU 2016/425. Test methods not included in the scope of accreditation are marked by a *.

Authorized for the testing of heat and flame-resistant protective clothing for car racers according to FIA 8856-2000 standard by the Fédération Internationale de l'Automobile (FIA) Paris.

TEST REPORT

Order number STFI:

20191153.7

Report date:

Person responsible:

31 May 2019

Reinhardt

Orderer:

Vescom B.V.

Sint Jozefstraat 20 5753 AV Deurne **NETHERLAND**

Test order:

Date:

3 May 2019

Order received:

8 May 2019

Material received:

8 May 2019

Material to analyse:

1 sample fabric

signed by clie	ent		code for order processing
SOTRA	Design :	807001	P1153_19_18

The sampling was supplied by the client. The test department is not informed about the sampling procedure.

Analysis content:

(1) Measurement and assessment of the dim out and black out effect in accordance to the STFI-internal test method PM 21 and classification in conformity with DIN EN 14501: 2006-02

Test conditions:

Two circular test patterns with diameter of 30 cm were cut out of the sample. The equipment for measuring the "illuminance reduction" contains lamps, which generate illumination intensities of 0.1 Lux up to 1000 Lux (high power-LED) and 1000 Lux up to 100 000 Lux (arc torch) in the sample area. The IR-radiation range, which is not part of the sun light, is filtered out before reaching the sample. The exposure of the sample takes place with parallelized light.

The measuring area and assessment box are geometrically and dimensionally realized that the whole sample area is observed with an 10° observation angle.

Measured values are determined at the observer position by luxmeter, as an alternative for the subjective assessment in human dark seeing mode. Also an image, made by an artificial eye camera, is supposed in this measuring mode.

The assessment of the regulation of light transmission of textile fabrics is defined in 2 classes (DIN EN 14501: 2006-02; p.15, table 6):

Regulation of light transmission of fabrics	Classification of fabrics
No perception of light in testing with	
1000 Lux	dim out
No perception of light in testing	
with 100 000 Lux	black out

Test results:

Measurement and assessment at 1000 Lux illuminance:

code	Illumination with sample	darkening level	Visual observation	classification
P1153_19	Lux	%		
18	0,00	100,00	no perception of light	complete dim out

Measurement and assessment at 100.000 Lux illuminance:

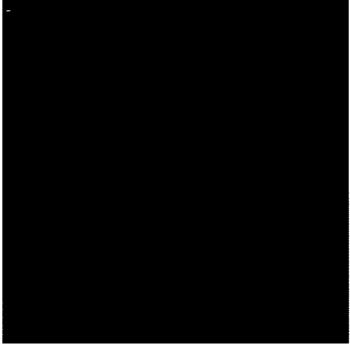
code	illuminance with sample	darkening level	Visual observation	classification
P1153_19	Lux	%		
18	0,00	100,00	no perception of light	complete black out

The parameter "darkening level" is calculated from the measured illuminances with and without sample material and does not form a basis for the classification (dim out or black out). The classification is based on the subjective visual observation.

Unless otherwise agreed, all materials we received within this order will be kept for a maximum time of 6 month. Materials which are not stored because of technical or safety reasons are excluded from that

The testing period is defined as timeframe between receipt of samples and issue date of test report.

The test results are referring to the submitted samples. These test report is not allowed to copy in parts.


Head of test department

Patrick Reinhardt, M.Sc. field responsible collaborator

Sample: Sotra Design: 807001

Illuminance 100 000 Lux

Illuminance 1000 Lux